



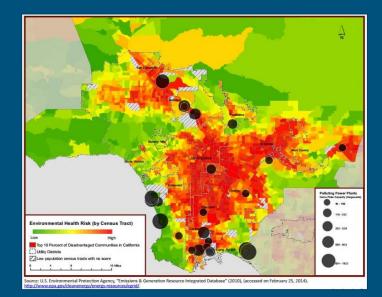
## Predicting What We Breathe Using Machine Learning to Understand Urban Air Quality

Jeanne Holm, Dawn Comer, Irene Burga, Aaron Gross @ City of Los Angeles Dr. Mohammad Pourhomayoun @ Cal State LA airquality@lacity.org





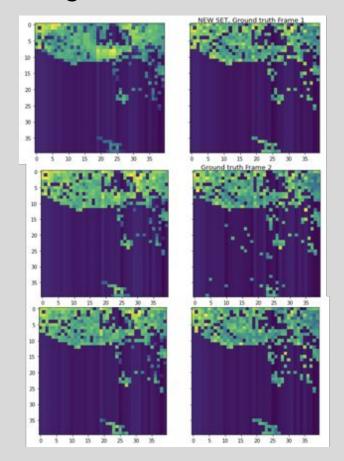
- NASA competitively awarded grants to use new tech (machine  $\bullet$ learning) with NASA data to solve a large problem
- The City was awarded an Advanced Information Systems Technology grant for Predicting What We Breathe


Increase our ability to

measure, understand,

quality in L.A.

### **Current State of Air Quality Data**


- Most maps today use either satellite data OR ground sensors, but not both
- These approaches lack
  - City-to-city collaboration on effective AQ control strategies
  - Accurate predictive capabilities
  - Urban scale information



## Steps to Data-Driven Decisions

- Identify and map all the regional air quality sensors
- Help City departments organize and manage that data
- Create a map of all air quality data in L.A. and look for gaps
- Identify environmental justice priorities
- Identify locations to fill in the gaps and deploy new sensors
- Work with the L.A. Public Library to distribute citizen science small sensors in specific areas
- Identify similarly polluted air quality sister cities to understand effective solutions

# Sample Prediction of $NO_2$ Based on Satellite Images and Meteorological Data



Frame 1 Prediction: 2nd day in the future prediction of Nitrogen Dioxide air pollution in Los Angeles County from previous 10 days of data

Frame 2 Prediction: 4th day in the future prediction of Nitrogen Dioxide air pollution in Los Angeles County from previous 10 days of data

Frame 3 Prediction: 6th day in the future prediction of Nitrogen Dioxide air pollution in Los Angeles County from previous 10 days of data

#### Benefits for NASA

Apply machine learning techniques to large, disparate datasets

- Identify and integrate local data (health, polluters, traffic, roads, ports) from smart city and internet of things sensors
- Integrate data standards with previous, current, and upcoming (MAIA) missions
- Federate satellite data and data from ground sensors and align resolution and periodicity
- Drive the use and application of NASA and space data for cities

## Benefits for the City

Improve city planning, health outcomes, and enforcement managing dynamic changes in the environment and ecosystem

- Create visualizations to improve understanding
- Identify and integrate local data (health, polluters, traffic, roads, ports) from smart city and internet of things sensors
- Identify gaps in coverage and deploy sensors to cover
- Correlate to green spaces and other mitigation efforts
- Share findings via smart city air quality intervention and toolkit (C40 cities, U.N. Sustainable Development Goal Network, Climate Mayors, etc.)



#### Partners

#### • Public

- City of Los Angeles
- NASA
- South Coast Air Quality Management District

#### • Private

- OpenAQ
- SmartAirLA
- SafeCast



AQMD



- California State
  University, Los Angeles
- Data Science Federation
- Organizations
  - Mayor Garcetti leads the C40 Cities
  - Climate Mayors

