

DOWNSTREAM GATEWAY

migrally and

*

Space for Earth

Clean Energy and green-H2 for Space Transportation

Julio A. Monreal, Teddy Peponnet, Adam Heriba Space for Green Growth & Clean Energy | ESA e-WS 14/09/2020

Space Transportation Renewable Energies Objectives

- Current ESA's Space Transportation main Renewable Energies objectives concern Europe's Spaceport¹:
- 1) Reduce electrical consumption cost and CO2 emissions by:
 - implementing Renewable Energy Sources (e.g. Photovoltaic solar fields) within the CSG electrical grid for auto-consumption
 - using **Biomass plants** waste heat to feed industrial processes
 - implementing a smart electrical grid management
- 2) Improve dependability, reduce CO2 emissions and stay competitive:
 - introducing Water Electrolysis together with Renewable Energies (PV solar and wind turbines) to produce green-hydrogen for both, fuel cells feeding and liquid hydrogen (launcher propellant) production
 - introducing hydrogen Fuel Cells to supply uninterruptible electrical power

¹Centre Spatial Guyanais (CSG) = Europe's Spaceport in French Guiana

→ THE EUROPEAN SPACE AGENCY

Energy at Europe's Spaceport (CSG)

- > CSG is the first consumer of electrical energy in French Guiana $\approx 20\%$ of the overall yearly production
- > Very intensive energetic processes at **cryotechnic and solid propellants** production plants
- 50% of the electricity is used for air-conditioning

Some key figures:

CSG power called on the grid: > 12MW
CSG yearly electrical energy consumption:
≈ 120 GWh

Electricity from the grid is not green enough today: ≈ 45% from fossil fuel plants (45% hydro, 10% solar).

*

Renewable Self Production: Photovoltaic Solar Plant

✓ Provides:

- Flexible & quick implementation
- 100% green & renewable energy source
- $> \approx 1500$ h/year solar power in French Guiana

Requires:

Management of intermittent production Avoiding disturbances on the grid ✓ Best balance between CGS energy needs and networks equilibrium & losses : 12MWp

✓ Key figures:

- ➤ CAPEX: ≈ 1M€ per MWp
- > OPEX: ≈ 20K€/MW/year
- > Lifetime: \approx 30 years (Inverters 7 years)
- > ROI: \approx 6 to 7 years

✓ *Stepped approach:*

Step 1 (2019–2021) => 5MWp

Step 2 (2022-2025) additional power to reach the ideal balance

=> Step 1 means: - 7% of energy from the grid & - 5000 CO2 eq tons/year

Renewable 3rd party Production: Biomass Power Plant

✓ Provides:

- Flexible implementation: gasifier concept
- "Green" electrical energy production
- Local knowhow development for French Guiana

Requires:

Important investment for plant implementation Grid feeding (self-consumption not allowed)

*

- Investment will be done by an energy sector operator who will sell electricity to the grid.
- "Waste heat" (considered as lost in the biomass process) will be reused by CSG for air-conditioning of buildings and solid propellant production process.

Green-LH2 Propellant: Water Electrolysis Plant & RE

✓ *Provides:*

- > 0% CO₂ emission production process
- Improved dependability: use of local resources (sun, wind and water)
- Step by step modular implementation
- Operational Flexibility

Requires:

Significant Clean Energy power (≈ 6MW) Electrical energy storage systems

- ✓ Available compact technology (PEM) allowing, with Renewable Energy Sources (PV solar and wind turbines), a high production rate (2.5 tpd) of green-H2:
 ≈ 6MW electrolyser plant (9±1 launches/year)
- ✓ Key figures:
 - ➤ CAPEX: ≈ 1.5M€ per MW (decreasing)
 - > OPEX: ≈ 220K€/MW/year (incl. infra, excl. utilities)
 - ➤ Lifetime: ≈ 20 years (major overhaul 10 years)
 - > ROI: \approx 8 to 9 years
- ✓ Stepped approach:
 - Step 1 (2019-21) => Studies & Pre-design
 - Step 2 (2022-2025) => implementation of a Water Electrolysis pilot plan
 - Step 3 (2030) => switch to full Water Electrolysis green-H2 production at CSG

=> Green-LH2 means: \approx - 1000 CO2 tons/launch

Summary & way forward

Mid of 2020 building of the first photovoltaic plant & 2021 first Biomass plant

1) Solar Plant 1st slice (5MWp) 2023 introduction of storage capabilities & green-LH2 Pilot Plant for technology learning curve @ CSG (impact on grid, validation of model saving, consolidation of 1) Solar Plant 2nd slice (7MWp) OPEX & life Cycle Cost...) to reach 12MWp 2025+ Fuel Cells & green-LH2 2) Biomass waste heat use for feeding CSG facilities 2) **Storage** of additional energy produced (fuel cells and/or 1) Potential increase of **photovoltaic** 3) **Smart Grid** Implementation Batteries) plant, wind turbines & storage 3) Start Fuel Cells deployment 2) Fuel Cells in substitution of diesel for remote sites (based on LH2 generator boil-off valorisation) 3) H2 mobility if economically viable 4) LH2 propellant production via **Water Electrolysis Pilot Plant** 4) H2 storage (advanced technos) ... 5) Step by step transition to green-LH2 propellant production via Water **Electrolysis**

→ THE EUROPEAN SPACE AGENCY

Europe's Spaceport Now and Then

→ THE EUROPEAN SPACE AGENCY

Any questions?

→ THE EUROPEAN SPACE AGENCY

Back-up slides

→ THE EUROPEAN SPACE AGENCY

Use of hydrogen in the EU (2018 data)

TOTAL USE OF HYDROGEN TODAY IN THE EU in TWh

Source: The Hydrogen Roadmap Europe, Fuel Cells and Hydrogen JU

French Guiana Electrical System (Grid)

PEM Water Electrolysers Industry

Several industrialists are currently offering WE systems for H2 production (cf. Industrialists consulted through ESA's RFI):

- Giner ELX (USA) working in Europe with H2B2 of Spain (*)
- Hydrogenics (Canada) working in Europe in Belgium (*)
- NELHydrogen from Norway (*)
- Air Liquide (F)
- Areva H2gen (F)
- Erredue SpA (I) with i.TEC-S+V (F)
- Idroenergy Spa (I)
- Siemens (D)
- ELB Elektrolysetechnik GmbH (D)
- Linde (D)
- Air Products (NL)
- ITM Power (GB)

(*) at least these 3 are currently offering PEM WE in the MWs/stack power range.

→ THE EUROPEAN SPACE AGENCY

¥